98 research outputs found

    Haplotype inference from unphased SNP data in heterozygous polyploids based on SAT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haplotype inference based on unphased SNP markers is an important task in population genetics. Although there are different approaches to the inference of haplotypes in diploid species, the existing software is not suitable for inferring haplotypes from unphased SNP data in polyploid species, such as the cultivated potato (<it>Solanum tuberosum</it>). Potato species are tetraploid and highly heterozygous.</p> <p>Results</p> <p>Here we present the software SATlotyper which is able to handle polyploid and polyallelic data. SATlo-typer uses the Boolean satisfiability problem to formulate Haplotype Inference by Pure Parsimony. The software excludes existing haplotype inferences, thus allowing for calculation of alternative inferences. As it is not known which of the multiple haplotype inferences are best supported by the given unphased data set, we use a bootstrapping procedure that allows for scoring of alternative inferences. Finally, by means of the bootstrapping scores, it is possible to optimise the phased genotypes belonging to a given haplotype inference. The program is evaluated with simulated and experimental SNP data generated for heterozygous tetraploid populations of potato. We show that, instead of taking the first haplotype inference reported by the program, we can significantly improve the quality of the final result by applying additional methods that include scoring of the alternative haplotype inferences and genotype optimisation. For a sub-population of nineteen individuals, the predicted results computed by SATlotyper were directly compared with results obtained by experimental haplotype inference via sequencing of cloned amplicons. Prediction and experiment gave similar results regarding the inferred haplotypes and phased genotypes.</p> <p>Conclusion</p> <p>Our results suggest that Haplotype Inference by Pure Parsimony can be solved efficiently by the SAT approach, even for data sets of unphased SNP from heterozygous polyploids. SATlotyper is freeware and is distributed as a Java JAR file. The software can be downloaded from the webpage of the GABI Primary Database at <url>http://www.gabipd.org/projects/satlotyper/</url>. The application of SATlotyper will provide haplotype information, which can be used in haplotype association mapping studies of polyploid plants.</p

    PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update

    Get PDF
    The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows ‘on-the-fly’ prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences

    PlnTFDB: updated content and new features of the plant transcription factor database

    Get PDF
    The Plant Transcription Factor Database (PlnTFDB; http://plntfdb.bio.uni-potsdam.de/v3.0/) is an integrative database that provides putatively complete sets of transcription factors (TFs) and other transcriptional regulators (TRs) in plant species (sensu lato) whose genomes have been completely sequenced and annotated. The complete sets of 84 families of TFs and TRs from 19 species ranging from unicellular red and green algae to angiosperms are included in PlnTFDB, representing >1.6 billion years of evolution of gene regulatory networks. For each gene family, a basic description is provided that is complemented by literature references, and multiple sequence alignments of protein domains. TF or TR gene entries include information of expressed sequence tags, 3D protein structures of homologous proteins, domain architecture and cross-links to other computational resources online. Moreover, the different species in PlnTFDB are linked to each other by means of orthologous genes facilitating cross-species comparisons

    The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    Get PDF
    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    A Small Set of Nuclear Markers for Reliable Differentiation of the Two Closely Related Oak Species Quercus Robur and Q. Petraea

    No full text
    Quercus robur and Q. petraea are, in addition to Fagus sylvatica, the main economically used deciduous tree species in Europe. Identification of these two species is crucial because they differ in their ecological demands. Because of a changing climate, foresters must know more than ever which species will perform better under given environmental conditions. The search for differentiating molecular markers between these two species has already lasted for decades. Until now, differentiation has only been possible in approaches with a combination of several molecular markers and a subsequent statistical analysis to calculate the probability of being one or the other species. Here, we used MiSeq Illumina data from pools of Q. robur and Q. petraea specimens and identified nuclear SNPs and small InDels versus the Q. robur reference genome. Selected sequence variants with 100% allele frequency difference between the two pools were further validated in an extended set of Q. robur and Q. petraea specimens, and then the number of markers was deliberately reduced to the smallest possible set for species differentiation. A combination of six markers from four nuclear regions is enough to identify Q. robur, Q. petraea or hybrids between these two species quite well and represents a marker set that is cost-efficient and useable in every laboratory
    corecore